Pengertian Sudut Istimewa dan Tabel – Sudut istimewa adalah sudut dengan nilai perbandingan trigonometri yang dapat ditentukan nilainya tanpa menggunakan kalkulator. Sudut-sudut istimewa antara lain: 0°, 30°, 45°, 60°, 90°, dan seterusnya. Berikut ini merupakan nilai perbandingan trigonometri sudut-sudut istimewa tersebut. Pengertian dan definisi Trigonometri. Trigonometri adalah bagian dari ilmu matematika yang mempelajari tentang hubungan antara sisi dan sudut suatu segitiga serta fungsi dasar yang muncul dari relasi tersebut. Trigonometri merupakan nilai perbandingan yang didefinisikan pada koordinat kartesius atau segitiga siku-siku. Bagi para siswa, trigonometri identik dengan fungsi trigonometri yang meliputi sinus (sin), cosinus (cos), tangen (tan), cosecan (cosec), secan (sec), dan cotangen (cotan) yang kesemuanya merupakan cara untuk menentukan suatu sisi sebuah segitiga atau sudut yang terbentuk dari dua buah sisi dalam sebuah segitiga. Trigonometri merupakan ilmu matematika yang sangat penting dalam kehidupan. Aplikasi ilmu trigonometri dalam kehidupan mencangkup segala bidang seperti astronomi, geografi, teori musik, elektronik, ekonomi, medical, teknik, dan masih banyak lagi. Dengan trigonometri kita bisa mengukur jarak suatu bintang diangkasa tanpa harus pergi kesana. Dengan trigonometri kita bisa mengukur sudut ketinggian tebing tanpa harus memanjatnya. Bisa mengukur lebar suatu sungai tanpa harus menyeberanginya. Itulah manfaat dari mempelajari trigonometri dalam kehidupan sehari-hari. Trigonometri adalah sebuah konsep. Hal pertama yang perlu dimengerti dalam memahami konsep dasar trigonometri adalah mengetahui, mengerti dan memahami bentuk dan rumus-rumus sebuah segitiga, terutama segitiga siku-siku. Pada dasarnya sebuah segitiga selalu terdiri dari 3 sisi, yaitu sisi miring, sisi samping, dan sisi depan. Dan tiga buah sudut yaitu sudut tegak lurus, sudut depan dan sudut samping. Dimana jika di tambahkan jumlah sudut sebuah segitiga haruslah 180 derajat. Tujuan utama mempelajari trigonometri dalam ilmu matematika adalah untuk menemukan nilai sebuah sudut atau panjang sebuah sisi sebuah segitiga. Untuk tujuan tersebut diatas maka trigonometri memiliki 2 nilai fungsi, yaitu:
Nilai fungsi Trigonometri
1. Nilai fungsi trigonometri unuk sudut istimewa
Sudut istimewa disini adalah sudut yang besarnya 0, 30, 45, 60, 90 derajat. Untuk menentukan nilai fungsi sudut istimewa digunakan konsep geometri.
2. Nilai fungsi trigonometri untuk sudut lainnya
Untuk menentukan nilai fungsi trigonometri sudut tidak istimewa biasanya menggunakan tabel atau scientific kalkulator yang dilengkapi dengan fungsi trigonometri.
Identitas Trigonometri
Dari nilai fungsi trigonometri tersebut kemudian diperoleh identitas trigonometri. Identitas trigonometri adalah suatu persamaan dari fungsi trigonometri yang bernilai benar untuk setiap sudutnya dengan kedua sisi ruasnya terdefinisi. Identitas trigonometri terbagi 3, yaitu Identitas Kebalikan, Identitas Perbandingan dan Identitas Phytagoras yang masing-masing memiliki fungsi dasar, yaitu:
Identitas
Kebalikan |
Identitas
Perbandingan |
Identitas
Phytagoras |
Cosec A = 1/ sin
A Sec A = 1/cos A Cot A = 1/ tan A |
Tan A = Sin A/
Cos A Cot A = Cos A / Sin A |
Cos2 A
+ Sin2 A = 1 1 + tan2 A = Sec2 A 1 + Cot2 A = Cosec2 A |
Fungsi trigonometri diatas dapat di proyeksikan kedalam sebuah grafik. Grafik fungsi trigonometri digunakan untuk mendeskripsikan fenomena alam seperti gerak gelombang, gerak harmonik sederhana, dan fenomena kelistrikan. Grafik fungsi trigonometri meliputi: grafik sinus, grafik cosinus dan grafik tangen.
MACAM –MACAM SUDUT ISTIMEWA
Sudut (90 – a)sin (90 – a) = Cos a
Cos (90 – a) = sin a
tan (90 – a) = cot a |
Sudut (90 + a)sin (90 + a) = Cos a
Cos (90 + a) = – sin a
tan (90 + a) = – cot a |
Sudut (180 – a)sin (180 – a) = sin a
Cos (180 – a) = – Cos a tan (180 – a) = – tan a |
Sudut (180 + a)sin (180+a) = -sina
Cos (180 + a) = – Cos a tan (180 + a) = tan a |
Sudut (270 – a)sin (270 – a) = – Cos a
cos (270 – a) = – sin a tan (270 – a) = ctg a |
Sudut (270 + a)sin (270 + a) = -cos a
cos (270 + a) = sin a tan (270 + a) = – cot a |
Sudut (360 – a)sin (360 – a) = – sin a
Cos (360 – a) = Cos a tan (360 – a) = – tan a |
Sudut (360 + a)sin (360 + a) = sin a
Cos (360 + a) = Cos a tan (360 + a) = tan a |
Sudut Negatif sin (-a) = – sin a
Cos (-a) = Cos a tan (-a) = – tan a
Sudut negatif dihitung searah dengan jarum jam.Tanda pada sudut negatif sesuai dengan tanda pada kuadran ke IV.Keterangan :
Untuk a sudut lancip
Tabel Nilai Trigonometri Sudut Istimewa![]() Pada tabel di bawah ini, perhatikan bahwa nilai sinus dimulai dari 0 menjadi 1 dan kembali lagi ke 0. Sebaliknya, nilai cosinus dimulai dari 1 menjadi 0 dan kembali ke 1 begitu seterusnya. Lihat bahwa beberapa sudut memiliki nilai sinus atau cosinus yang sama tapi sebagian berbeda tanda yaitu ada yang positif dan ada yang negatif. Nah untuk menentukan positif atau negatif, maka gunakanlah konsep kuadran yang telah dijelaskan di atas.
Nah, di atas adalah tabel nilai perbandingan trigonometri sudut istimewa. Karena jumlahnya tidak sedikit, maka sebenarnya kita cukup menghafal sudut 0o – 90o saja. Selebihnya, kita dapat mengikuti pola tabel di atas. Untuk lebih jelasnya perhatikan contoh berikut : Anggaplah anda sudah hafal nilai trigonometri untuk sudut 0o – 90o. Lalu anda diminta untuk menentukan nilai sin 150o, dan cos 135o. Sebenarnya ada dua trik untuk menjawab soal ini yaitu :
|